Search results

1 – 3 of 3
Article
Publication date: 19 May 2020

Binrui Wang, Jiqing Huang, Guoyang Shen and Dijian Chen

Active compliance control is the key technology for Tri-Co robots (coexisting–cooperative–cognitive robots) to interact with the environment and people. This study aims to make…

Abstract

Purpose

Active compliance control is the key technology for Tri-Co robots (coexisting–cooperative–cognitive robots) to interact with the environment and people. This study aims to make the robot arm shake hands compliantly with people; the paper proposed two closed-loop-compliant control schemes for the dynamic identification of cascade elbow joint.

Design/methodology/approach

The active compliance control strategy consists of inner and outer loops. The inner loop is the position control using sliding mode control with disturbance observer (SMCDO), in which a new saturation function is designed to replace the traditional signal function of sliding mode control (SMC) law so as to mitigate chatter. The outer loop is the admittance control to regulate the dynamic behaviours of the elbow joint, i.e. its impedance. The simulation is carried out to verify the performance of the proposed control scheme.

Findings

The results show that the chatter of traditional SMC can be effectively eliminated by using SMCDO with this saturation function. In addition, for the handshake task, the value of threshold force and elbow joint compliance is defined. Then, the threshold force tests, impact tests and elbow-joint compliance tests are carried out. The results show that, in the impedance model, the elbow joint compliance only depends on the stiffness parameters, not on the position control loop.

Practical implications

The effectiveness of the admittance control based on SMCDO can improve the adaptability of industrial manipulator in different working environments to some degree.

Originality/value

The admittance control with SMCDO completed trajectory tracking has higher accuracy than that based on SMC.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 June 2022

Guoyang Wan, Fudong Li, Bingyou Liu, Shoujun Bai, Guofeng Wang and Kaisheng Xing

This paper aims to study six degrees-of-freedom (6DOF) pose measurement of reflective metal casts by machine vision, analyze the problems existing in the positioning of metal…

Abstract

Purpose

This paper aims to study six degrees-of-freedom (6DOF) pose measurement of reflective metal casts by machine vision, analyze the problems existing in the positioning of metal casts by stereo vision sensor in unstructured environment and put forward the visual positioning and grasping strategy that can be used in industrial robot cell.

Design/methodology/approach

A multikeypoints detection network Binocular Attention Hourglass Net is constructed, which can complete the two-dimensional positioning of the left and right cameras of the stereo vision system at the same time and provide reconstruction information for three-dimensional pose measurement. Generate adversarial networks is introduced to enhance the image of local feature area of object surface, and the three-dimensional pose measurement of object is completed by combining RANSAC ellipse fitting algorithm and triangulation method.

Findings

The proposed method realizes the high-precision 6DOF positioning and grasping of reflective metal casts by industrial robots; it has been applied in many fields and solves the problem of difficult visual measurement of reflective casts. The experimental results show that the system exhibits superior recognition performance, which meets the requirements of the grasping task.

Research limitations/implications

Because of the chosen research approach, the research results may lack generalizability. The proposed method is more suitable for objects with plane positioning features.

Originality/value

This paper realizes the 6DOF pose measurement of reflective casts by vision system, and solves the problem of positioning and grasping such objects by industrial robot.

Details

Assembly Automation, vol. 42 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 23 January 2024

Guoyang Wan, Yaocong Hu, Bingyou Liu, Shoujun Bai, Kaisheng Xing and Xiuwen Tao

Presently, 6 Degree of Freedom (6DOF) visual pose measurement methods enjoy popularity in the industrial sector. However, challenges persist in accurately measuring the visual…

Abstract

Purpose

Presently, 6 Degree of Freedom (6DOF) visual pose measurement methods enjoy popularity in the industrial sector. However, challenges persist in accurately measuring the visual pose of blank and rough metal casts. Therefore, this paper introduces a 6DOF pose measurement method utilizing stereo vision, and aims to the 6DOF pose measurement of blank and rough metal casts.

Design/methodology/approach

This paper studies the 6DOF pose measurement of metal casts from three aspects: sample enhancement of industrial objects, optimization of detector and attention mechanism. Virtual reality technology is used for sample enhancement of metal casts, which solves the problem of large-scale sample sampling in industrial application. The method also includes a novel deep learning detector that uses multiple key points on the object surface as regression objects to detect industrial objects with rotation characteristics. By introducing a mixed paths attention module, the detection accuracy of the detector and the convergence speed of the training are improved.

Findings

The experimental results show that the proposed method has a better detection effect for metal casts with smaller size scaling and rotation characteristics.

Originality/value

A method for 6DOF pose measurement of industrial objects is proposed, which realizes the pose measurement and grasping of metal blanks and rough machined casts by industrial robots.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 3 of 3